open menu

fluid dynamics

  • Innovative Computer Aided Solidification Technology

    ERGOLINES and ESTECO teamed up to elaborate this new technology for 'assisted solidification' of steel to improve further the quality of the final product. The goal is to optimize the stirrer parameters and reduce internal and surface defects, increase product homogeneity and minimize energy consumption.

  • Multi-objective Optimization of A-Class Catamaran Foils Adopting a Geometric Parameterization Based on RBF Mesh Morphing

    The design of sailing boats appendages requires taking in consideration a large amount of design variables and diverse sailing conditions. The operative conditions of dagger boards depend on the equilibrium of the forces and moments acting on the system. This equilibrium has to be considered when designing modern fast foiling catamarans, where the appendages accomplish both the tasks of lifting up the boat and to make possible the upwind sailing by balancing the sail side force. In this scenario, the foil performing in all conditions has to be defined as a trade-off among contrasting needs.

  • Performance of different optimization concepts for reactive flow systems based on combined CFD and response surface methods

    Optimization of reactive flow systems, e.g. coal and biomass combustion, gasification or partial oxidation, is usually a multi-parameter problem, while geometry configurations (e.g. reactor dimensions, burner dimensions) and operating conditions (e.g. fuel mass flow, reactor temperature, cooling capability) mainly determine the process efficiency and profitability. 

  • Design of ducted propeller nozzles through a RANSE-based optimization approach

    Marine propellers design requirements are always more pressing and the application of unusual propulsive configurations, like ducted propellers with decelerating nozzles, may represent a valuable alternative to fulfill stringent design constraints. This study proposes an optimization approach for the design of the accelerating
    and decelerating nozzles for ducted propeller applications.

  • Design and analysis of a new generation of CLT propellers

    The researchers of University of Genoa, in collaboration with SISTEMAR SA, proposed a study to design and analyze a tip loaded propellers to improve full-scale propeller efficiency (lower fuel consumptions and lower emission levels to comply with environmental pollution regulations). The modified tip loaded propeller (a mix between a tip rake and a contracted and tip loaded propeller) is designed via an optimization strategy using a Boundary Elements Method (BEM), a custom parametric description of the unconventional blade geometry and an optimization algorithm within the modeFRONTIER environment.

  • A support approach for the conceptual design of energy-efficient cooker hoods

    The design of a cooker hood concerns different aspects, such as the aesthetic design, thermal and structural analysis of components, fluid dynamics performance and energy consumption.​The scope of the proposed research is to evaluate the performance of a kitchen hood during the conceptual design in terms of energy efficiency to classify the product using the European energy label. An optimization analysis is proposed to enhance the design of products with reduced energy consumption.

  • White Paper | Aerodynamic Design Best Practices Using PowerFlow and modeFRONTIER optimization

    The example in this paper is an aerodynamic guidance study of a generic SUV-type vehicle. The goal was to understand the impact of rear end design changes to provide guidance for achieving minimized drag, while also considering rear lift and side force fluctuations. The project was conducted on ExaCLOUD, which provided secure, web-based access to the complete Exa simulation software suite and modeFRONTIER.

    white paper & focus
  • Lucid Motors boosts electric vehicle performance with modeFRONTIER

    Lucid Air prototypes are undergoing a rigorous development program. modeFRONTIER has been used - together  with other applications -  to optimize the design of an inverter with the aim of enhancing efficiency and minimize failure rates.


    success story
  • Knowledge-Based Integrated Aircraft

    A multidisciplinary optimization framework connecting the geometric model, aerodynamic model and structural model is performed on a wing shape with predefined loads on the wing. For global optimization, MOGA is used and for local optimization Simplex algorithm is used as the design variables are continuos.

  • Formulation and optimization of involute spur gear in external gear pump

    The study focuses on developing a methodology of designing asymmetric involute gear, and formulate analytical expression for the instantaneous flowrate and flow non-uniformity given by asymmetric, non-standard involute gear pumps. These analytical expressions are then used within a multi-objective numerical optimization algorithm aimed at minimizing both the flow non-uniformity and the pump size to achieve a specific displacement.​


Sign in