abaqus

Process Integration and Optimization of ICME Carbon Fiber Composites for vehicle lightweighting: a preliminary development

Different from the Sheet Molding Compounds (SMC) structure, the unidirectional (UD) structure (laminate) has multiple layers, and each layer has anisotropic properties. The layout of each component in the vehicle structure needs to be optimized in order to achieve the optimum structure performance such as stiffness, durability, NVH, and safety. he multi-layer UD structure optimization is implemented on the platform of modeFRONTIER.

Identification of strainrate dependent hardening sensitivity of metallic sheets under in-plane biaxial loading

The objective of this thesis was to propose biaxial tensile tests on a cruciform specimen to identify strain-rate dependent hardening models of sheet metals from quasi-static to intermediate strain rates. The in-plane biaxial testing procedures and parameter identification strategy have been validated on AA5086 and applied to identify rate-dependent hardening laws for DP600 steel. The optimization procedure was carried out in modeFRONTIER.

Identification of friction coefficients and strain-compensated Arrhenius-type constitutive model by a two-stage inverse analysis technique

A two-stage inverse analysis technique is proposed to identify the friction coefficients during hot compression test of aluminum alloy AA6N01 and its material parameters in the strain-compensated Arrhenius-type constitutive model. By means of modeFRONTIER, FEM simulation and error calculation are integrated in this study. 

Thermal Analysis of a Diesel Piston and Cylinder Liner using the Inverse Heat Conduction Method

This Master’s thesis developed a thermal analysis model of a diesel piston that is used in Volvo Cars engines, which enhances the possibilities to determine the complete thermal loads of the car engine and can be used as a boundary condition when performing combustion CFD-simulation. 

Multi-objective optimization of oblique turning operations

Multi-objective optimization of oblique turning operations while machining AISI H13 tool steel has been carried out in this study using the FEM method and modeFRONTIER's multi-objective genetic algorithm MOGA-II. The objective is to minimize main cutting force (force component in the cutting speed direction) and tool–chip interface temperature as both are prime contributors for the machining performance in terms of tool wear and surface integrity of the workpiece.

A CFD-based multidisciplinary optimization of aeroelastic systems with coupled reliability constraints

Designing aeroelastic systems with maximum reliability is studied in this paper using an AGARD 445.6 aircraft wing. Applications of RBDO techniques with a multidisciplinary code coupling approach based on high-fidelity CAD, CFD and CSD softwares and fluidstructure interface is presented with the aim of constructing a fully automatic design framework for aeroelastic optimization problems.

Structural optimization of a Transversal Rolling Mill Component to Improve Flexional Stiffness

This is a preliminary study to understand if an increased stiffness of a structural component of the transversal mill (the bar component) can bring some effects in the product by stabilizing the process. This work analyzes the bar sustaining the plug, a component of the expander mill. The team must solve to increase the stiffness of the bar trying to keep the mill set up stable.

A multidisciplinary framework to support the design of injection mold tools

The design of injection mold tools is a complex process for which market pressures demand ever-shorter development time and higher quality level. Thus, it is considered imperative to adopt new methods and tools to support the design process, in order to achieve a more effective mold design solution. 

The Application of Multi-Attribute Optimization as a Systems Engineering Tool in an Automotive CAE Environment

Multi-Attribute Optimization (MAO) is proposed as a tool for delivering high value products within the systems engineering approach taken in the automotive industry. This work focuses on MAO methods that use Computer Aided Engineering (CAE) analyses to build a metamodel of system behaviour.

Multidisciplinary Code Coupling for Analysis and Optimization of Aeroelastic Systems

This paper presents a practical methodology for static aeroelastic analysis and aeroelastic optimization via coupling of high-?delity commercial codes.

Pages